Exam Seat No:_____ C.U.SHAH UNIVERSITY Winter Examination-2021

Subject Name : Linear Algebra - I

	Subject Code: 4SC03LIA1		Branch: B.Sc. (Mathematics)		
	Semeste	er: 3 Date: 15/12/2021	Time: 02:30 To 05:30	Marks: 70	
	Instructi (1) (2) (3)	ions: Use of Programmable calculator & a Instructions written on main answer Draw neat diagrams and figures (if	any other electronic instrument is prohib book are strictly to be obeyed. necessary) at right places.	pited.	
	(4)	Assume suitable data if needed.			
Q-1	a)	Attempt the following questions	: Subspace is also subspace	[14]	
	a) b)	Dimension of P_1 is (a) 0 (b) 1 (c) 2 (c)	 d) 3 	(01)	
	c)	For which value of k the vectors (independent? (a) 0 (b) 1 (c) 2 (d)	(1,0,0), $(0,2,0)$, $(0,0,k)$ are linearly 1 & 2 both	(01)	
	d)	 If V(F) is vector space then which (a) V(F) is closed under vector and (b) V(F) is closed under scalar matrix (c) Every element of V(F) has matrix (d) every element of V(F) has addressed 	ch of the following statement is false? Idition ultiplication altiplicative inverse Iditive inverse	(01)	
	e)	if $V(F) = R^2(R)$ then the additiv (a) (-3,2) (b) (-3,-2)	re inverse of (3,2) is (c) $(1/3,1/2)$ (d) all	(01)	
	f)	For bijective map $T: \mathbb{R}^2 \to \mathbb{R}^2$ the (a) 1 (b) 2 (c) 3 (n the rank of T is d) 4	(01)	
	g)	Find the value of k for which the linearly dependent.	vectors $(1,0,0)$, $(0, k - 1,0)$, $(0,0, k)$ a	re (02)	
	h)	Define subspace of vector space.		(02)	
	i)	Define Linear Transformation.		(02)	
	j)	Find the $d(u, v)$ if $u = (u_1, u_2)$:	$= (5,4)\& v = (v_1, v_2) = (1,5).$	(02)	
Atte	mpt any	four questions from Q-2 to Q-8 .			
Q-2		Attempt all questions		[14]	
	a)	Show that $v = (-1,1,0)$ is liner c $v_2 = (-2,3,2)$, $v_3 = (-6,7,5)$.	ombination of vectors $v_1 = (1,0,1)$,	(05)	
	b)	Prove: A non-empty subset W of only if $\alpha u + \beta v \in W \forall \alpha, \beta \in F$	vector space $V(F)$ is subspace of $V(F)$ and $\forall u, v \in V$.	if and (05)	
	c)	Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x, y) = (x, y)$ transformation is linear.	x + 2y, 3x - y). Show that the given	(04)	

Q-3		Attempt all questions	[14]
-	a)	Prove that the set $S = \{(1,2,1), (2,1,1), 1,1,2\}$ is basis for R^3	(06)
	b)	Express $v_1 = (3,4,6)$ as linear combination of $v_1 = (1,-2,2)$, $v_2 = (0,3,4)$, $v_3 = (1,2,-1)$.	(04)
	c)	Let $T: \mathbb{R}^2 \to \mathbb{R}$ be linear map with $T(1,1) = 3$ and $T(0,1) = -2$. Then find $T(1,2)$.	(04)
O-4		Attempt all questions	[14]
L.	a)	Let $T: V \to W$ be a linear transformation then show that Rank of T is subspace of W	(05)
	b)	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformation given by $T(x, y) = (x + y, x - y)$ then find T^{-1} .	(05)
	c)	Find cosine angle between $u = (1,2)$ and $v = (0,1)$, also verify Cauchy-Schwarz Inequality.	(04)
0-5		Attempt all questions	[14]
-	a)	Let $V = R^+$, the set of all positive real numbers. Define the "sum" of two elements u and v in V to be their product i.e $u + v = u \cdot v$ and define "multiplication" of elements u in V by scalar α to be $\alpha u = u^{\alpha}$ Prove that V is real vector space with 1 as the additive identity	(06)
	b)	Let $T: R^3 \rightarrow R^3$ be a linear transformation defined by T(x, y, z) = (x + 2y + z, 2x - y, 2y + z). Find the matrix representation of T with respect to basis B , where $B = \{(1,0,0), (0,1,0), (0,0,1)\}$.	(04)
	c)	Prove that $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ is an inner product space ,where $u = (u_1, v_1)$ and $v = (v_1, v_2)$, $u, v \in \mathbb{R}^2$	(04)
Q-6		Attempt all questions	[14]
	a)	Which of the following set of vectors in vector space $V = R^3$ are linearly dependent or linearly independent? i) $S_1 = \{(4, -1, 2), (-4, 10, 2), (4, 0, 1)\}$ ii) $S_2 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$	(05)
	b)	Show that the intersection of two subspace of vector space V is also subspace of V.	(05)
	c)	Let $S = \{v_1, v_2\}$ be a subset of vector space $V(F)$ if S is linearly independent then show that $B = \{v_1 + v_2, v_1 - v_2\}$ is also linearly independent.	(04)
Q-7		Attempt all questions	[14]
-	a)	Define a basis for vector space and show that $S = \{(1,0), (0,1)\}$ is basis for R^2 .	(05)
	b)	If $W = \{(x, y, z) x - 3y + 4z = 0 \& x, y, z \in R\}$ prove that W is subspace of R^3 .	(05)
	c)	Explain : Reflection operator.	(04)
Q-8	a)	Attempt all questions Show that $V(F) = R^2$ is a vector space under operation defined as For $u, v \in R^2$ where $u = (u_1, v_1)$ and $v = (v_1, v_2)$ such that	[14] (07)
	b)	$u + v = (u_1 + v_1, u_2 + v_2)$ and $\alpha(u_1, u_2) = (\alpha u_1 + \alpha u_2) \forall \alpha \in R$ State and prove Rank-nullity theorem.	(07)

